Latest News

Clues beginning to emerge on asymtomatic SARS-CoV-2 infection
Back in November of 2020, during the first wave of the COVID-19 pandemic, I was teaching an in-person microbiology laboratory. One of my students had just been home to see his parents, and they all c…
Read more
Could there maybe be better uses of genetics and probiotics?
Professor Meng Dong and his laboratory have created a probiotic that can metabolize alcohol quickly and maybe prevent some of the adverse effects of alcohol consumption. The scientists cloned a highl…
Read more
ChatGPT is not the end of essays in education
The takeover of AI is upon us! AI can now take all our jobs, is the click-bait premise you hear from the news. While I cannot predict the future, I am dubious that AI will play such a dubious role in…
Read more
Fighting infections with infections
Multi-drug-resistant bacterial infections are becoming more of an issue, with 1.2 million people dying of previously treatable bacterial infections. Scientists are frantically searching for new metho…
Read more
A tale of two colleges
COVID-19 at the University of Wisconsin this fall has been pretty much a non-issue. While we are wearing masks, full in-person teaching is happening on campus. Bars, restaurants, and all other busine…
Read more

14-3 Various responses to COVID-19

( 8234 Reads)


None Max

|

How to stop the spread of COVID-19

A virus spreads in society because those ill with the virus make contact with others who are susceptible. If the virus transmits to more than one other person for each person it infects, it will cause an epidemic. This ratio is called the reproduction number and is denoted as R naught (R0) by epidemiologists. Each infectious disease has a base-line R0 that indicates how well it naturally spreads in a population, but it is possible to alter this number by changing behavior. For example, it appears COVID-19 has a maximum incubation period of about 14 days. If it were possible for everyone to stay home for three weeks (just giving a buffer here) and never make contact with another person, R0 would go to zero. Of course, this is an extreme example. Modern society cannot function without any human interaction. But it does demonstrate that changing human behavior can slow the spread of the virus. As the virus has spread around the world, various countries have tried different measures to stop the spread of COVID-19. In this section, we will examine several successful examples and one poor example currently unfolding.

China's response to the virus

Initially, China attempted to suppress information about a new type of pneumonia that was popping up in Hubei province. The first case of COVID-19 may have occurred as early as November 17th, 2019, and Chinese authorities tracked at least 266 people who contracted the virus in that year. The Chinese government attempted to hide information about the virus, even punishing doctors who tried to warn their colleagues about a new SARS-like virus that was spreading in the City of Wuhan. To be fair, the initial emergence of a new infection is often mistaken for other diseases, and it is only in hindsight that disease origins become apparent. However, the punishing of physicians trying to raise the alarm suggests a more sinister purpose. Authorities in China finally recognized the virus and reported on January 21st that there was host-to-host transmission of COVID-19.

Once China confronted (or admitted) the growing epidemic, how did they limit the spread of the virus so that only about 84,000 cases occurred? (Note: I doubt the reported cases in any country are the actual real cases due to either inadequate testing or inaccurate reporting of incidents). First, China had a plan in place. Planning is essential to the response to any crisis. Knowing what you are going to do before a crisis hits allows the identification and preparation of equipment and personnel that will be needed. It is much easier to get resources in place beforehand than to attempt to do it during a crisis. Marshaling resources in a time of crisis is always tricky because of the compressed timeframe.

As the seriousness of the epidemic became clear, China implemented a quarantine beginning on January 23rd, eventually encompassing all of Hubei province, putting 45 million people under stay-at-home orders. The government suspended all public transportation, and large gatherings were prohibited. Community committees delivered needed food, medicine, and medical supplies to residents, reducing the need for outside trips. Two emergency field hospitals with 2,400 beds were constructed within a couple of weeks to house those with severe cases of COVID-19. Large venues were transformed into medical observation and treatment centers to accommodate less ill patients. These could support up to 14,000 people. The deployment of medical rescue teams from other areas of China to Hubei ensured enough personnel to staff these treatment centers. Having space to isolate all COVID-19 patients decreased the spread of the disease in the community.

A grid-closed management system prevented unnecessary interaction of individuals. The policy restricted movement, allowing only one person outside to run errands every two days. Each area was closed off, with only one entrance and exit point, facilitating close monitoring of movement. As each person traveled through these grids, they had to scan a QR code. Thus anyone who tested positive could be rapidly identified, and all their contacts quickly traced. This draconian monitoring is a significant invasion of privacy. There are better-designed applications that protect privacy, but allow the same ability to trace contacts (see below). Some of the methods to encourage compliance involved beatings and near imprisonment. These types of responses are extreme and unwarranted. On January 27th, all schools were closed, and instruction went online. Outside of Hubei, all passengers underwent temperature tests at airports, railway stations, and bus stations.

In the economic sector, aggressive measures prevented business failures and helped the medical response during the epidemic. Lower loan thresholds and loan rates allowed businesses to borrow money under more favorable terms. Companies could also apply for tax relief and other government funds to help them survive. Some businesses shifted production lines to produce medical protective equipment and ventilators. China has the manufacturing capacity to do this.

The epidemic is now better controlled within China. To prevent reinfection from abroad, entering flights are restricted to twelve airports, and incoming passengers must undergo COVID-19 testing and quarantine until results come back negative. The aggressive measures taken by China limited the spread of the virus, and new cases of COVID-19 began to decrease within two months. Today, the Chinese government reports that there is no sustained spread of the illness within the country. Hopefully, this success can continue, and again, one should treat the reports from a historically secretive country with skepticism.

China continues to monitor the virus and impose strict lockdowns when infection rates begin in an area. This policy has been successful in controlling the virus and keeping deaths low. As of July 2022, they have recorded 14,647 deaths, much less than many other countries. There is some concern that the reporting coming from China is not accurate.

In hindsight, China's zealous response to the virus may have gone too far. Their zero-COVID policy repressed the virus for years, but in the interim, their population did not vaccinate completely. The inactivated vaccines that China developed, CoronaVac and Sinopharm, provide strong protection after three doses. Too many in the Chinese population did not get three doses, and because of this, when China relaxed the zero-COVID rules late in 2022, infections exploded. The CDC estimates that from December 2022 to February 2034, 1.41 million died in the ensuing wave. Repression of the virus caused significant psychological and economic damage. However, for those who did get vaccinated, they were protected from the illness. The high death toll was caused by a lack of progress in vaccination.

Taiwan's response to the virus

Because of its proximity to China and the previous SARS epidemic of 2003, Taiwan centralized its emergency response to outbreaks by creating a new agency, the National Health Command Center. The NHCC had broad authority to organize the response and to advise the government on appropriate steps. On December 31st, 2019, when China notified the World Health Organization of a viral pneumonia of unknown origin, the NHCC began to act. Taiwanese officials started to board planes that were direct flights from Wuhan and assess passengers for fever and pneumonia symptoms. Any individual with symptoms has to place themselves into quarantine. On January 5th, authorities expanded monitoring to any individual who had traveled to Wuhan, China, not just direct flights. By January 20th, an organized government response involving at least 124 separate items began including border control from the air and sea, case identification (using data and technology), quarantine of suspicious cases, contact tracing, resource allocation, reassurance and education of the public while fighting misinformation, formulation of schools and childcare policies, and relief to businesses.

Why was Taiwan's response so effective? The most critical factor was the speed of the reaction. Within days of being notified of an outbreak in China, Taiwan took aggressive steps to identify potential cases of the new illness. Second, a coordinated response against the virus at the national level enabled the entire society to work together. Third, the leveraging of information and technology helped to identify and contain cases rapidly. For example, within one day, the national health records database was integrated with the national travel database, allowing doctors to immediately know the travel history of any patient coming to their office. Also, citizens who entered quarantine were tracked on their phones and received emotional and financial support, including meals, to ensure they stayed home. This comprehensive response prevented the establishment of the illness in Taiwan. As of May 23rd, there have been 441 cases of COVID-19 and seven deaths.

South Korea's response to COVID-19

South Korea is a close neighbor and trading partner of China. Because of the frequent travel of tourists, workers, and academics between the two countries, it was inevitable that COVID-19 cases would ultimately spread to South Korea. Instead of a nationwide lockdown, South Korea focused on rapid and widespread testing facilities and aggressive contact tracing. A vital element of the contact tracing was the rapid development and distribution of apps that helped discern contacts of COVID-19 positive patients. The first confirmed case of COVID-19 entered South Korea at Incheon International Airport from Wuhan, China. The individual was discovered after a temperature screening and immediately tested for the virus. The government quickly reacted, increasing its alert level from Aware to Care and released information about the patient's movement to alert the public of any possible exposure. Korea began to monitor all travelers coming from China and opened screening centers to detect asymptomatic carriers. The government prepared local hospitals as infection control institutes, and anyone testing positive was placed under quarantine and their contacts traced. Authorities also monitored all discovered contacts to prevent further infections. In early February, the number of COVID-19 patients grew steadily, and the government expanded testing to even marginal contacts with known COVID-19 positive cases. The government quickly approved further kits to test for the virus, facilitating the expanded testing. By February 28th, laboratories were able to conduct 15,000 tests per day. Tests were free for all residents, and as of March 16th, the Korean government had tested 250,000 people.

On February 19th, surveillance identified the 31st patient and discovered her to be the origin of a super spreader event. This individual had close contact with many in a church congregation and ended up spreading the infection to thousands of individuals. The government began limiting trips and outdoor activities and imposed emergency safety measures such as basic hygiene rules and social distancing. Drive through testing was first suggested by Jaemyung Lee, the governor of Gyeonggi Province. He observed that one-on-one testing had limited ability for social distancing, put health workers at high risk, and consumed large amounts of PPE. Low-contact drive through testing solved these problems, allowing safe testing in 10 minutes or less. Patients could learn the results of their tests via a text to their phone in three days or less. Due to the rapid deployment of testing centers, it was initially difficult for the public to locate them. To help solve this problem, the maker of the OilNow app, which usually locates the nearest gas station, added a service that mapped all testing centers.

Those in densely populated areas may not have cars or space may not be present to implement drive-through testing. In these areas, walkthrough centers enabled testing of patients from booths equipped with depressurizers (to prevent the spread of infectious virus), intercoms, and attached gloves that allowed doctors to interact with and collect samples from patients. The patient stands outside the booth, and the physician inside performs testing procedures. Daily counts of tested, positive, in quarantine, out of quarantine, and deaths appear at a website that was available to the public. Citizens could drill down into the information looking at all positive tests in their neighborhood, along with individual movement trajectories of COVID-19 positive cases in their area.

Contact tracing in South Korea is more straightforward because each mobile phone account links to a national ID. Combining this tracking data with credit card transaction history, and video footage from public surveillance cameras made it possible to reconstruct the movements of positive COVID-19 cases in great detail. Health authorities targeted contacts of cases for testing and precautionary self-quarantine. The Korean government developed this aggressive form of contact tracing with health emergencies such as the current pandemic in mind. Due to pressure by citizens, the government released this information to the public. Widespread distribution of this information has helped residents understand their risks, avoid hot spots of infection, and decide whether to be tested. Transparency is almost always the best course of action. Authorities used text messaging information systems, initially designed to inform citizens in local areas of disasters, to keep the public informed. General messages were sent to all residents every day to inform them of the number and location of cases in their area. Specific texts were also sent to individuals if their paths had crossed with a known COVID-19 positive case. Some found these frequent contacts overwhelming, but overall it was well received. Armed with the movement data, several private companies developed applications and websites that could trace the user's paths compared to those who were COVID-19 positive. The translation of mapping data into a visual, interactive form made it easier for citizens to modify their behavior. Some apps even alerted the user when they were within 100m of a confirm patient's trajectory.

All residents and visitors to Korea are required to install a mobile app developed by the Ministry of Health and Welfare. This app requires travelers to report potential symptoms for 14 days. If signs of respiratory distress or fever occur, the user must report to local health authorities for evaluation. As of April 1st, all incoming, long-term residents must self-quarantine for two weeks. The Ministry tracks quarantine compliance with the app.

As the number of cases grew in Korea, the government developed a smart management system to speed up contact tracing. Rapid tracing required the combination of data from the police agency, three telecommunication firms, and twenty-two credit card companies. The app was able to reduce the time consumed for contact tracing from one day to ten minutes. People exposed to a known COVID-19 case had to self-quarantine, and the government monitored their symptoms and location for 14 days using another mobile app. Unlike the travel tracking application, this application is voluntary.

South Korea was able to respond so rapidly to the COVID-19 epidemic because they had planned for years for such a possibility. The previous outbreaks of SARS and MERS made it clear that a worldwide pandemic was likely to occur in the coming years. Debates pitting privacy rights and sharing of customer data against public health already happened, and a balance was negotiated beforehand, saving valuable time.

One drawback of the Korean plan, as with the Chinese, was a significant intrusion into the private lives of its citizens to allow effective contact tracing. Other societies, such as the United Kingdom, the US, and Canada, may not be so willing to give up these privacy rights. Fortunately, there are other compelling solutions to contact tracing. (see below)

|